B.SC. THIRD SEMESTER (HONOURS) EXAMINATION 2021

Subject: Mathematics
Course code: SH/MTH/305/SEC-1
Time: 2 Hours

Course ID: 32115
Course Title: Logic and Sets
Full Marks: 40

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

1. Answer any five questions:
(a) Show that $R=\{(x, y):(x-y)$ is divisible by 7$\} \subset \mathbb{Z} \times \mathbb{Z}$ is an equivalence relation on \mathbb{Z}.
(b) Let $A=\{x \in \mathbb{Z}: 0 \leq x \leq 10\}$ and $B=\{x \in \mathbb{Z}: x \leq 15\}$. Find $A-B$.
(c) Determine the power set of $A=\{1,2,3,4\}$.
(d) Find all the equivalence relations on the set $S=\{a, b, c\}$.
(e) If $A \cup B=A \cup C$ and $A \cap B=A \cap C$ then prove that $B=C$.
(f) Let A, B be two subsets of an universal set. Prove that $A=B$ if and only if $A \Delta B=\emptyset$.
(g) Construct the truth table for the statement formula ($\sim p \vee \sim q$).
(h) Find the negation of the following quantified predicates:

$$
(\exists x, y \in D)(x+y=3)
$$

2. Answer any four question:
(a) (i) For any three non-empty sets A, B, C prove that

$$
A \times(B \cap C)=(A \times B) \cap(A \cap C)
$$

(ii) Show that the sets $A=\{2,1\}$ and $B=\left\{x \in \mathbb{R}: x^{2}-3 x+2=0\right\}$ are equal.
(b) If $A=\{5,6,7,8,9\}, B=\{2,4,6,8,10,12\}$ and $C=\{3,6,9,12\}$, then find

$$
\begin{aligned}
A \cap(B \cap C), A \cup(B \cup C), A \cup(B \cap C), A \cap(B \cup C), A-(B \cup C) .
\end{aligned} \quad \begin{aligned}
& 1+1+1+1+1=5
\end{aligned}
$$

(c) (i) Prove that intersection of two equivalence relations on a set A is an equivalence relation on A.
(ii) Is union of two equivalence relations an equivalence relation? Justify your answer.

$$
3+2=5
$$

(d) It is known that in an university, 60% of professors play tennis, 50% of them play bridge, 70% jog, 20% play tennis and bridge, 40% play bridge and jog and 30% play tennis and jog. If someone claimed that 20% professors jog and play tennis and bridge, would you believe his claim? Justify.
(e) (i) Show that the propositions $\sim(a \vee b)$ and $\sim a \wedge \sim b$ are logically equivalent.
(ii) Construct the truth table for the statement form: $(a \vee \sim b) \wedge c$.
3. Answer any one question:
$10 \times 1=10$
(a) (i) A relation ρ is defined on \mathbb{Z} by " $x \rho y$ iff $2 x+3 y$ is divisible by 5 ". Prove that ρ is an equivalence relation on \mathbb{Z}.
(ii) If $A \Delta B=A \Delta C$, then prove that $B=C$
(iii) Show that $(A-B)$ and $(A \cap B)$ are disjoint sets.
(b) (i) Let p, q, r be three statements. Show that $p \wedge(q \vee r)=(p \wedge q) \vee(p \wedge r)$ (using truth table).
(ii) A relation ρ is defined on the set \mathbb{Z} by " $x \rho y$ if and only if $x+y$ is odd" for $x, y \in \mathbb{Z}$. Examine whether ρ is reflexive, symmetric and transitive.
(iii) Let ρ be a binary relation on a set A. Then prove that ρ is transitive if and only if $\rho o \rho \subset \rho$.
$4+3+3$

